PaddleSeg 近期带来重大升级,覆盖最新顶会模型、10 倍提速的智能标注工具、实时人像分割 SOTA 方案、全新 3D 医疗影像分割方案等。欢迎广大开发者使用 NVIDIA 与飞桨联合深度适配的 NGC 飞桨容器在 NVIDIA GPU 上体验!
PaddleSeg 重磅发新!带来 NeurIPS 顶会模型、智能标注 10 倍速神器、人像分割 SOTA 方案、3D 医疗影像分割利器!
图像分割是计算机视觉三大任务之一,基于深度学习的图像分割技术也发挥日益重要的作用,广泛应用于工业质检、自动驾驶、遥感、智慧医疗、智能办公、媒体娱乐等行业。然而在实际业务中,图像分割依旧面临诸多挑战,比如:分割数据标注效率较低,标注过程自动化程度低;垂类场景多样,打造全流程方案的难度大;针对 3D 分割的方案较少。
针对以上挑战,飞桨图像分割开源套件 PaddleSeg 近期带来重磅升级,主要包括:
- 官方开源NeurIPS 2022顶会发表的实时语义分割模型RTFormer。该模型结合 CNN 和 Transformer 的优点,创新设计并使用了高效的RTFormer Block。对比其他实时语义分割模型,RTFormer 在多个数据集上实现 SOTA 精度和速度。详情可参考:https://mp.weixin.qq.com/s/qmEhcHhAqefqp2keazbJ0g
图 1 RTFormer Block架构
- 针对标注数据的难题,发布智能标注平台 EISeg 正式版。EISeg 支持医疗、遥感、工业质检等领域的分割标注,新增视频分割标注,分割标注效率提升超过10 倍。详情可参考:https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.6/EISeg。
图 2 智能标注平台 EISeg
- 针对人像分割场景,发布实时人像分割 SOTA 方案 PP-HumanSegV2。该方案的推理速度提升87.15%,分割精度达到96.63%,可视化效果更佳,可与商业收费方案媲美,支持零成本开箱即用。详情可参考:https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.6/contrib/PP-HumanSeg
图 3 PP-HumanSegV2 模型架构
- 针对 3D 医疗分割场景,发布3D 医疗影像分割方案 MedicalSegV2。该方案支持3D 交互式标注,实现高精度、定制化、全流程医疗影像分割。详情可参考:https://github.com/PaddlePaddle/PaddleSeg/tree/develop/contrib/MedicalSeg
图 4 3D 医疗影像分割效果
喜欢的小伙伴欢迎 star 支持哦~您的支持是我们不断进取的最大动力!
围绕 PP-HumanSegV2、EISeg、MedicalSeg,PaddleSeg 团队近期进行了三日课直播。大家可以扫描下方二维码,加入 PaddleSeg 交流群获取回放视频。除此之外,入群还可以领取 30G 学习大礼包,包括:深度学习基础教程、图像分割论文合集、PaddleSeg 历次直播视频、图像分割应用案例和企业范例等。
NGC 飞桨容器介绍
如果您希望体验 PaddleSeg 工具的新特性,欢迎使用 NGC 飞桨容器。NVIDIA 与百度飞桨联合开发了 NGC 飞桨容器,将最新版本的飞桨与最新的 NVIDIA 的软件栈(如 CUDA)进行了无缝的集成与性能优化,最大程度的释放飞桨框架在 NVIDIA 最新硬件上的计算能力。这样,用户不仅可以快速开启 AI 应用,专注于创新和应用本身,还能够在 AI 训练和推理任务上获得飞桨+NVIDIA 带来的飞速体验。
最佳的开发环境搭建工具 - 容器技术。
- 容器其实是一个开箱即用的服务器。极大降低了深度学习开发环境的搭建难度。例如你的开发环境中包含其他依赖进程(redis,MySQL,Ngnix,selenium-hub 等等),或者你需要进行跨操作系统级别的迁移。
- 容器镜像方便了开发者的版本化管理
- 容器镜像是一种易于复现的开发环境载体
- 容器技术支持多容器同时运行
最好的 PaddlePaddle 容器
NGC 飞桨容器针对 NVIDIA GPU 加速进行了优化,并包含一组经过验证的库,可启用和优化 NVIDIA GPU 性能。此容器还可能包含对 PaddlePaddle 源代码的修改,以最大限度地提高性能和兼容性。此容器还包含用于加速 ETL(DALI, RAPIDS)、训练(cuDNN, NCCL)和推理(TensorRT)工作负载的软件。
PaddlePaddle 容器具有以下优点:
- 适配最新版本的 NVIDIA 软件栈(例如最新版本 CUDA),更多功能,更高性能。
- 更新的 Ubuntu 操作系统,更好的软件兼容性
- 按月更新
- 满足 NVIDIA NGC 开发及验证规范,质量管理
通过飞桨官网快速获取
环境准备
使用 NGC 飞桨容器需要主机系统(Linux)安装以下内容:
- Docker 引擎
- NVIDIA GPU 驱动程序
- NVIDIA 容器工具包
有关支持的版本,请参阅NVIDIA 框架容器支持矩阵和NVIDIA 容器工具包文档。
不需要其他安装、编译或依赖管理。无需安装 NVIDIA CUDA Toolkit。
NGC 飞桨容器正式安装:
要运行容器,请按照 NVIDIA Containers For Deep Learning Frameworks User’s Guide 中Running A Container一章中的说明发出适当的命令,并指定注册表、存储库和标签。有关使用 NGC 的更多信息,请参阅 NGC 容器用户指南。如果您有 Docker 19.03 或更高版本,启动容器的典型命令是:
*详细安装介绍 《NGC 飞桨容器安装指南》
https://www.paddlepaddle.org.cn/documentation/docs/zh/install/install_NGC_PaddlePaddle_ch.html
*详细产品介绍视频
【飞桨开发者说|NGC 飞桨容器全新上线 NVIDIA 产品专家全面解读】
https://www.bilibili.com/video/BV16B4y1V7ue?share_source=copy_web&vd_source=266ac44430b3656de0c2f4e58b4daf82
飞桨与 NVIDIA NGC 合作介绍
NVIDIA 非常重视中国市场,特别关注中国的生态伙伴,而当前飞桨拥有超过 470 万的开发者。在过去五年里我们紧密合作,深度融合,做了大量适配工作,如下图所示。
今年,我们将飞桨列为 NVIDIA 全球前三的深度学习框架合作伙伴。我们在中国已经设立了专门的工程团队支持,赋能飞桨生态。
为了让更多的开发者能用上基于 NVIDIA 最新的高性能硬件和软件栈。当前,我们正在进行全新一代 NVIDIA GPU H100 的适配工作,以及提高飞桨对 CUDA Operation API 的使用率,让飞桨的开发者拥有优秀的用户体验及极致性能。
以上的各种适配,仅仅是让飞桨的开发者拥有高性能的推理训练成为可能。但是,这些离行业开发者还很远,门槛还很高,难度还很大。
为此,我们将刚刚这些集成和优化工作,整合到三大产品线中。其中 NGC 飞桨容器最为闪亮。
NVIDIA NGC Container – 最佳的飞桨开发环境,集成最新的 NVIDIA 工具包(例如 CUDA)
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.