网易首页 > 网易号 > 正文 申请入驻

学术分享丨精度与通用性不可兼得,北大华为理论证明低精度下scaling law难以实现

0
分享至

转自 机器之心

本工作来自北京大学智能学院王立威、贺笛老师课题组与华为诺亚方舟实验室李震国、孙嘉城研究员。作者包括智能学院博士生冯古豪、古云天、罗胜杰;信息科学技术学院本科生杨铠、艾心玥。

大模型量化通过将模型参数从较高的精度(如 bfoat16)压缩到低精度(如 int8 或 int4)来降低模型推理的开销,提高模型推理的速度。在大语言模型的实际部署中,量化技术能够显著提高大语言模型推理的效率。但近日,来自哈佛大学,MIT,CMU,斯坦福大学和 Databricks 的研究团队通过大量实验总结出了大语言模型关于精度的 Scaling Law,实验发现

无独有偶,来自北大和华为的研究团队近期则从理论角度研究了量化对于大模型通用性的影响。具体而言,研究者关注了量化对于大模型数学推理能力的影响。其研究理论表明足够的模型精度是大模型解决基本数学任务的重要前提,而量化会大大降低大模型在基本数学任务上的表现,甚至提升足够参数量也无法弥补。


论文链接:https://arxiv.org/abs/2410.13857

量化降低了模型的基本数学能力

数学推理能力是大语言模型的一项重要能力,也是大语言模型走向通用人工智能的关键能力之一。然而,相较于经典的自然语言处理任务,数学推理往往需要严格的逻辑和准确的中间结果。在各种各样的数学推理任务中,算术能力是大语言模型解决各类复杂的数学问题的基础。更需要注意的是,大模型在处理数值的时候,会将一个数 “切分” 成一段一段的数字,例如:数字 1234.5678 在大模型中可能被编码为 “12” “34” “.” “56” “78”,如此编码后的信息是否可以被正确理解进而完成算术任务也是一个疑问。

本工作研究者以基本的算术能力为切入点,研究了不同精度的 Transformer 在解决基本数学任务上的能力差异。下图展示了一些相应的例子。为了反映大模型对长数字的实际解码方式,在这些任务中,运算数中的每一数位均以一个独立的 token 作为大模型的输入,大模型的输出也是从高位往低位逐数位地输出。


在本工作中,研究者分别使用对数精度 Transformer 和常数精度 Transformer 的理论模型来刻画标准精度大语言模型和量化后的低精度大语言模型。其中,对数精度指的是 Transformer 内部单个的神经元至多能够存储由 O(logn) 比特表示的实数,这里 n 指的是模型所能处理的最大序列长度。 而常数精度指的是 Transformer 内部单个的神经元只能够存储至多 c 比特表示的实数,这里的 c 是一个与序列长度无关的小常数。 这里,实数可以由定点数或者浮点数格式表示。

当前主流的大语言模型,包括 GPT 系列、Claude 系列或者开源的 LLAMA 系列,能够处理的最大序列长度一般在 4k 到 128k 不等。在这样的序列规模下,对数精度和常数精度较好地刻画了量化前后的精度差异。

之前的研究结果表明,标准精度 Transformer 具备解决这些基本算术任务的能力。这表明合适的精度能够保证大模型具有解决相应基本数学任务的能力。然而本工作理论证明当大语言模型经过量化、精度降低后,模型的能力受到了显著的影响。当使用低精度模型时,模型在多整数相加、整数相乘的任务上需要超多项式的模型参数量。这表明当精度不足时,即便充分增大模型尺寸 (scaling parameters),其也难以获得完成这些基本算术任务的能力。

下表总结了相应的理论结果,表明了不同精度下各基本算术任务所需模型宽度的理论结果。其中,蓝色代表模型可以在较小的尺寸内解决相应的任务,而红色代表模型无法在可接受的尺寸内解决相应的问题。可以发现,标准精度的大语言模型能够轻松解决算术的任务,然而经过量化后低精度的大模型,在解决基本算术任务上的能力出现了明显的缺失。


实验验证

除了理论推导,研究者进行了大量实验来验证理论结果。研究者在算术运算的数据集上训练了一系列小模型,在小模型上的训练结果表明,在多整数相加和整数相乘任务上,提升精度能够使相同尺寸的模型解决更大规模的问题。


此外,研究者还在 LLaMA3.1-8B 模型上进一步进行了一些系列实验,实验结果同样证实,在使用 int4 进行量化之后,在大语言模型各基本算术任务上的表现均出现了相应的下降。对于最为困难的整数相乘任务,其性能下降最为明显。


总而言之,模型的量化压缩会明显损害大语言模型在数学推理问题上的性能,为了解决复杂的数学推理问题,足够的精度是必不可少的。这也说明,在实际部署大语言模型的过程中,不能够一味追求量化带来的效率,也要考虑到应用场景,采用合适的部署策略,同时兼顾大语言模型的实际性能和运行效率。

【免责声明】转载出于非商业性的教育和科研目的,只为学术新闻信息的传播,版权归原作者所有,如有侵权请立即与我们联系,我们将及时删除。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相关推荐
热点推荐
日企“山业”推出磁吸式网线:可减少端口损坏,传输速度 10Gbps

日企“山业”推出磁吸式网线:可减少端口损坏,传输速度 10Gbps

IT之家
2024-11-23 22:35:12
半年两次公示,刘克斌拟获提拔

半年两次公示,刘克斌拟获提拔

鲁中晨报
2024-11-24 21:00:04
买羽绒服,别老盯着波司登!这6个宝藏国货品牌,不坑中国人

买羽绒服,别老盯着波司登!这6个宝藏国货品牌,不坑中国人

猫小狸同学
2024-11-24 22:55:03
苏亚雷斯还没接手鲁能,就从国安挖走多名嫡系爱将,古加意外领衔

苏亚雷斯还没接手鲁能,就从国安挖走多名嫡系爱将,古加意外领衔

小海要说球
2024-11-24 17:44:30
前体操冠军被骂当擦边网红后续:涨粉几十万,曾读北大放弃编制!

前体操冠军被骂当擦边网红后续:涨粉几十万,曾读北大放弃编制!

古希腊掌管月桂的神
2024-11-23 15:18:50
加拿大执迷不悟,给蔡英文颁奖,我们该如何反制?

加拿大执迷不悟,给蔡英文颁奖,我们该如何反制?

邬所不言
2024-11-24 23:08:48
破36万亿!拜登找上中国,中美达成新共识!美这次彻底扛不住了!

破36万亿!拜登找上中国,中美达成新共识!美这次彻底扛不住了!

趣观速评
2024-11-24 14:10:02
出差日本,朋友给我介绍了特色神待少女,提供食宿就能为所欲为

出差日本,朋友给我介绍了特色神待少女,提供食宿就能为所欲为

扑街大佬
2023-09-11 18:43:19
肖峰严重违纪违法被查,他就是湖南商人实名举报的那个

肖峰严重违纪违法被查,他就是湖南商人实名举报的那个

肖飞说
2024-11-24 23:43:23
俄乌最新!已击毁

俄乌最新!已击毁

21世纪经济报道
2024-11-24 22:46:32
你知道黑桃女吗?如果你的女朋友突然纹身,一定小心她的外国朋友

你知道黑桃女吗?如果你的女朋友突然纹身,一定小心她的外国朋友

临在剧场
2023-06-13 17:34:56
开车时请记得把它关掉!它能“吃掉”35%的油,堪称“油老虎”

开车时请记得把它关掉!它能“吃掉”35%的油,堪称“油老虎”

趣说世界哈
2024-11-24 01:15:03
全身溃烂生不如死,丧失生育功能,武汉首批新冠患者如今结局如何

全身溃烂生不如死,丧失生育功能,武汉首批新冠患者如今结局如何

杨哥历史
2024-10-30 10:27:30
网传宁波一外卖小哥被泥土车压死,现场太惨!网友:应该取缔外卖

网传宁波一外卖小哥被泥土车压死,现场太惨!网友:应该取缔外卖

火山诗话
2024-11-24 08:44:31
看好!高盛预测:未来3年,美国GDP增速都将超过其他发达国家?

看好!高盛预测:未来3年,美国GDP增速都将超过其他发达国家?

王爷说图表
2024-11-24 23:36:08
恭喜王汝恒!首次执教就打进8强,朱荣振爆发砍11分,乔文瀚21分

恭喜王汝恒!首次执教就打进8强,朱荣振爆发砍11分,乔文瀚21分

萌兰聊个球
2024-11-24 16:26:00
“反诈老陈”落泪求职:为什么我劝你,一定要珍惜现在的单位

“反诈老陈”落泪求职:为什么我劝你,一定要珍惜现在的单位

洞见
2024-11-24 00:17:23
一医院两副主任互殴!

一医院两副主任互殴!

护士网
2024-11-25 00:03:10
热点科技:机器人+半导体+新质生产+算力+存储+华为+服务器

热点科技:机器人+半导体+新质生产+算力+存储+华为+服务器

小佩棋不蹦迪
2024-11-24 04:05:38
小米su7被借走拍颜色电影,车主欲哭无泪狂洗6遍,网友:车还要吗

小米su7被借走拍颜色电影,车主欲哭无泪狂洗6遍,网友:车还要吗

简读视觉
2024-11-24 06:45:03
2024-11-25 08:07:00
中国人工智能学会
中国人工智能学会
中国人工智能学会网易官方账号
2991文章数 1462关注度
往期回顾 全部

科技要闻

大数据“杀熟”将被整治!四部门出手了!

头条要闻

媒体:特朗普点将完毕 对华政策方面其团队群"鹰"荟萃

头条要闻

媒体:特朗普点将完毕 对华政策方面其团队群"鹰"荟萃

体育要闻

卡文迪什:公路自行车传奇谢幕

娱乐要闻

窦靖童演唱会:王菲助阵,谢霆锋助唱

财经要闻

特朗普任免对市场有何影响?券商研判

汽车要闻

尊界S800首张官图发布 双色车身"尊的"很亮

态度原创

健康
手机
艺术
房产
公开课

花18万治疗阿尔茨海默病,值不值?

手机要闻

小米神秘新机大揭秘:圆形相机模组+5060mAh电池,你会心动吗?

艺术要闻

故宫珍藏的墨迹《十七帖》,比拓本更精良,这才是地道的魏晋写法

房产要闻

丁村迎来大动作!首宗、百亩城更宅地挂出!楼面价2367元/㎡!

公开课

一块玻璃,如何改变人类世界?

无障碍浏览 进入关怀版