网易首页 > 网易号 > 正文 申请入驻

北航提出全新偏好数据构建框架,助力大模型实现更全面的对齐效果

0
分享至

近期,北京航空航天大学、AI 初创公司零一万物、清华大学等团队合作,提出了一种 PopAlign 框架。

它集成了六种对比响应的引导生成策略,全面覆盖了在响应生成过程中可能出现的各种对比先验。

这些对比策略分别包括前缀对比、示例对比、引导对比、参数数量对比、排行榜对比和改良对比,涵盖了从提示(Prompt)、模型(Model)到管道(Pipeline)的多个层级。

通过对这些对比引导策略的综合应用,该课题组能够帮助大模型构建出更加多样化的偏好数据。并且,由于先验足够明确,也可以摆脱额外的人类或 AI 反馈标签。

基于此,PopAlign 不但提升了对齐效果,而且降低了对齐成本,为大模型的安全性和鲁棒性提供了保障。

近日,相关论文以《PopAlign:使对比模式多样化,实现更全面的对齐》(PopAlign: Diversifying Contrasting Patterns for a More Comprehensive Alignment)为题在预印本平台arXiv上发布 [1]。

北京航空航天大学硕士研究生王泽坤是第一作者,波形智能 CTO 周王春澍以及零一万物算法副总裁黄文灏博士担任联合通讯作者。

助力大模型实现更全面的对齐效果

在训练大模型的过程中,对齐是一个至关重要的阶段。它旨在调整大模型的响应分布,使之更符合人类的价值观或偏好。

当前,主流的对齐方法主要包括:基于人类反馈的强化学习,以及基于 AI 反馈的强化学习。

采用这些方法时,首先要让大模型针对每个用户指令生成成对的响应,再让人类用户或另一个大模型,根据用户的价值观或偏好,手工或自动地为这些成对的响应进行反馈标注,进而将它们分别标注为“更被偏好的”或“更被拒绝的”。

正是基于这些偏好标签,大模型的响应分布才得以逐步贴近人类用户所偏好的响应分布,同时远离不被偏好的响应分布。

在此过程中,让模型生成具有偏好对比度的成对响应至关重要。(编者注:这里的偏好对比度是指,一个响应与另一个响应相比,更被用户偏好的程度。)

原因在于,这个偏好对比度决定了第二步反馈标注操作的准确性,且会影响后续进行模型响应分布调整的准确性。

不过,由于第一步引导模型生成显式的成对响应,只是模型响应分布的一个采样,因此在这些成对响应的“样本”上,进行的模型响应分布优化,可能会存在不全面之处。

而目前大多数对齐方法,不但只采取有限的采样,而且不能保证响应的生成,有足够的可以引导出偏好对比度的先验。

举例来说,大模型 LLaMA 2 只通过不同的模型变体或不同的文本解码温度,来生成偏好对比响应。

这种简单的采样,不足以将要对齐的模型中对于偏好模式的理解全部引导出来。

也就是说,这可能导致大模型在某个偏好模式下对齐得比较好,但在另一个偏好模式下对齐得不够好。

并且,生成的成对响应很容易同质化,造成很难分辨孰好孰坏,进而影响后续对齐训练的稳定性。

PopAlign 框架正是在该背景下被提出的。

它的诞生,旨在解决以下两个关键问题:

其一,如何引导出更加全面、丰富且有先验的对比模式,以增强偏好对比数据的多样性和对比度。

其二,探究这些多样化的对比模式,对模型对齐性能的影响。

一般来说,大模型的训练包括预训练、监督微调和对齐训练三个阶段。

其中,对齐训练的目的是“3H 原则”,即模型要有帮助(Helpful)、无害(Harmless)和诚实(Honest)。

这意味着,模型不仅要提供有用的回答,还要避免包含任何冒犯或有害的内容,且在回答中尽可能地做到真实可信。

也正是这些原则,确保了模型在实际应用中既能满足用户需求,又能安全、可靠地运作。

因此,从应用上看,PopAlign 框架致力于提升大模型对齐训练的效果,其作用涵盖大模型应用的方方面面,包括智能问答助手、客服、教育辅助机器人、写作助手等。

研究中他们发现,这些对比模式的引导方式大体上可以分成三类,分别是:数据层面、模型层面和框架层面。

“也就是 Prompt-Model-Pipeline 三个层级,即 PopAlign 这个名字的来源。”王泽坤解释道。

同时,他们得出的实验结果,也与所预期的相符,就是让对比模式更加多样,能带来更加全面的对齐增益。

“今后大模型对齐方面的研究和实践,可以从我们的研究中汲取经验,进而帮助提升其对齐的综合效果。”王泽坤表示。

高校与企业的联合培养,促进在大模型领域收获一系列成果

在做这项研究的同时,王泽坤还在做其他的研究。

其中,包括统一四个模态数据(文本、视频、图像、语音)的理解和生成大模型 MIO[2],提升大模型进行长度可控文本生成以及复制粘贴工具使用能力的方法 PositionID [3],以及针对大模型工具使用的多粒度基准评测集 MTU-Bench[4] 等

这也造成分配到每项研究上的时间比较有限。所以,为了协调各项研究的进度,他除了要增加自己的工作时间,还需要保证足够的工作效率。

“这个状态从 2024 年 2 月持续到 2024 年 10 月。在这半年多的时间里,我一直过着非常充实的生活。”王泽坤说。

据介绍,王泽坤本科就读于北京航空航天大学中法工程师学院。值得一提的是,该学院在数学和物理方面的本科教育非常领先,而 AI 恰恰是一个需要数学、物理和计算机三大学科协同作用的领域。

“所以,我认为我所在的学院,为 AI 相关人才的培养提供了良好的范本,而我正是在这个环境中成长起来的。”王泽坤说。

因为王泽坤本科大部分学科都采用法语教学,所以他选择在大一时着重提升自己的法语水平,大二大三致力于补足在数学、物理和计算机方面的知识和能力。

据他介绍,在他的大二暑假,也就是 2020 年 7 月,有两件事的发生,促使他走向大模型这个研究方向。

一是 GPT-3 的诞生。

二是他阅读了复旦大学邱锡鹏教授撰写的书籍《神经网络与深度学习》。

“这本书重点讲述了自然语言处理领域相关的内容。在我阅读它,并感受到‘为机器赋智能’这项事业的趣味和使命感时,GPT-3 也恰好出现了,后者掀起了大模型的一波小高潮。

这令我开始坚信与大模型相关技术,一定会在不久后促成一波革命性的影响。”王泽坤表示。

于是,他在整个大三时期,阅读了大量与大模型相关的论文,并全力寻找与此相关的科研机会。

然而,由于当时学校的算力有限,不足以支撑大模型方向的科研,因此王泽坤选择走出校门,到大模型企业寻找实习机会。

自 2021 年 9 月开始,王泽坤先后在澜舟科技、北京智源人工智能研究院、零一万物等企业开展实习,并与合作者联合完成了一系列具有影响力的研究。

除了上面提到的 MIO,还涉及到首个大模型角色扮演数据模型评测全方案 RoleLLM[5],具有工业级性能的全透明开源大模型系列 MAP-Neo[6] 等多项成果。

与此同时,在学校里,他也得到了其硕士生导师许可教授的大量指导和帮助,并逐渐培养起较为完善的科研素养和能力。

王泽坤表示:“得益于学校和企业的联合培养,我才能够在大模型领域获得比较迅速的成长。”

目前,王泽坤刚刚开始他硕士研究生第三年的学习生涯,并且也在字节跳动的大模型研究院继续开展实习研究和探索。

他提到,接下来将继续专注于统一理解和生成的多模态大模型、下一代大模型训练方式、大模型角色扮演等方面的研究。

参考资料:

1.Wang Z M, Wang S, Zhu K, et al. PopAlign: Diversifying Contrasting Patterns for a More Comprehensive Alignment.arXiv:2410.13785, 2024. https://doi.org/10.48550/arXiv.2410.13785

2.Wang Z, Zhu K, Xu C, et al. Mio: A foundation model on multimodal tokens.arXiv:2409.17692, 2024. https://doi.org/10.48550/arXiv.2409.17692

3.Wang Z, Duan F, Zhang Y, et al. PositionID: LLMs can Control Lengths, Copy and Paste with Explicit Positional Awareness.arXiv:2410.07035, 2024.https://doi.org/10.48550/arXiv.2410.07035

4.Wang P, Wu Y, Wang Z, et al. MTU-Bench: A Multi-granularity Tool-Use Benchmark for Large Language Models.arXiv:2410.11710, 2024.https://doi.org/10.48550/arXiv.2410.11710

5.Wang Z M, Peng Z, Que H, et al. Rolellm: Benchmarking, eliciting, and enhancing role-playing abilities of large language models.arXiv:2310.00746,2023.https://doi.org/10.48550/arXiv.2310.00746

6.Zhang G, Qu S, Liu J, et al. Map-neo: Highly capable and transparent bilingual large language model series.arXiv:2405.19327, 2024.https://doi.org/10.48550/arXiv.2405.19327

运营/排版:何晨龙

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

/阅读下一篇/

斯坦福00后数学博士创业公司拟融资5000万美元,瞄准AI量化金融

返回网易首页 下载网易新闻客户端
相关推荐
热点推荐
这是要公开的节奏,歼35内场双机同框,和歼15编队飞行

这是要公开的节奏,歼35内场双机同框,和歼15编队飞行

三叔的装备空间
2025-06-04 22:03:29
暂停营运!陪伴深圳人16年,曾是无数“深漂”落脚第一站...

暂停营运!陪伴深圳人16年,曾是无数“深漂”落脚第一站...

深圳好玩
2025-06-04 12:51:01
越来越多年轻人不在客厅放沙发,我尝试了一下,真的很爽

越来越多年轻人不在客厅放沙发,我尝试了一下,真的很爽

时尚舒适家
2025-06-03 14:20:49
“三天是男人的极限”,女孩谎称提前开学去见男友,网友直接举报

“三天是男人的极限”,女孩谎称提前开学去见男友,网友直接举报

妍妍教育日记
2025-02-09 22:58:40
中国主动公布东风5说明美国已经走在军事冒险的路上了!

中国主动公布东风5说明美国已经走在军事冒险的路上了!

林子说事
2025-06-04 17:14:26
你知道的医院里潜规则?网友:相信我,别吃芒果,旺旺,火龙果

你知道的医院里潜规则?网友:相信我,别吃芒果,旺旺,火龙果

户外钓鱼哥阿勇
2025-06-04 10:22:02
女游客被咬身亡:是三亚蛇毒还是医院渎职?|大象夜读

女游客被咬身亡:是三亚蛇毒还是医院渎职?|大象夜读

大象新闻
2025-06-04 19:31:06
喜欢生娃的尼日利亚,卖卵盛行... 女大学生受尽折磨,只能赚100块...

喜欢生娃的尼日利亚,卖卵盛行... 女大学生受尽折磨,只能赚100块...

英国那些事儿
2025-06-04 02:21:44
57岁港星患肾衰竭再曝惨状,移民居住环境差,开窗即吸食二手大麻

57岁港星患肾衰竭再曝惨状,移民居住环境差,开窗即吸食二手大麻

果娱
2025-06-04 11:39:51
以色列宣布已消灭哈马斯全部核心领导层

以色列宣布已消灭哈马斯全部核心领导层

桂系007
2025-06-01 14:46:03
山东省医疗保险事业中心发布公告,济南福仁美大药房、老百姓大药房、漱玉平民大药房等山东40家药店被解除医保协议关系

山东省医疗保险事业中心发布公告,济南福仁美大药房、老百姓大药房、漱玉平民大药房等山东40家药店被解除医保协议关系

半岛官网
2025-06-04 08:19:40
图片报:因戴维斯在国家队受伤,拜仁最高可获750万欧赔偿

图片报:因戴维斯在国家队受伤,拜仁最高可获750万欧赔偿

懂球帝
2025-06-05 07:10:07
家长天塌了!13岁少年花2480买球拍,商家不肯退,律师的说法亮了

家长天塌了!13岁少年花2480买球拍,商家不肯退,律师的说法亮了

南南说娱
2025-06-04 15:38:19
英皇女神落手落脚经营自己生意,残到网友不认得曾是「翻版黎姿」

英皇女神落手落脚经营自己生意,残到网友不认得曾是「翻版黎姿」

粤睇先生
2025-06-04 10:26:04
中国三大高钾食物,多吃腿脚有劲,还能防止中风,家有老人的必看

中国三大高钾食物,多吃腿脚有劲,还能防止中风,家有老人的必看

猪猪之家
2025-03-14 20:30:10
陕西65岁阿姨感染艾滋,探查原因后,医生:这个细节被忽视了

陕西65岁阿姨感染艾滋,探查原因后,医生:这个细节被忽视了

青青会讲故事
2025-04-03 17:10:48
李在明就任总统:年薪2.4亿韩元配专职警卫、专机、主厨、免费医疗及退休住宅

李在明就任总统:年薪2.4亿韩元配专职警卫、专机、主厨、免费医疗及退休住宅

奇思妙想生活家
2025-06-04 12:42:41
张若昀伦敦遛娃!父女牵手同行,搂女儿肩膀太有爱,唐艺昕跟后面

张若昀伦敦遛娃!父女牵手同行,搂女儿肩膀太有爱,唐艺昕跟后面

懂体育的小吖头
2025-06-04 09:11:00
“火箭军女神”李莉:因多次预判美军阴谋,被美国列入制裁黑名单

“火箭军女神”李莉:因多次预判美军阴谋,被美国列入制裁黑名单

跳跳历史
2025-05-14 10:24:39
携带现金出入境须知:人民币现钞最多不超2万元

携带现金出入境须知:人民币现钞最多不超2万元

国际在线
2025-06-04 09:42:41
2025-06-05 07:23:00
DeepTech深科技 incentive-icons
DeepTech深科技
麻省理工科技评论独家合作
15252文章数 513733关注度
往期回顾 全部

科技要闻

小鹏Q1交付暴涨超理想 蔚来亏62亿研发最猛

头条要闻

特朗普与普京通话:俄罗斯将回应乌克兰无人机袭击

体育要闻

从次轮末到乐透边缘 杨瀚森的试训有什么玄机?

娱乐要闻

彭于晏方出面澄清与蔡依林复合恋情!

财经要闻

地铁涨价争议背后,“赚钱”难题有解吗

汽车要闻

车机升级 新款AION Y Plus上市售9.98万起

态度原创

本地
时尚
游戏
公开课
军事航空

本地新闻

《中国匠人——锦绣中国》即日上线:解读千年丝线的东方美学密码

黄色+蓝色,今年夏天最美配色!

Theshy复刻剑魔名场面,1打4天神下凡打懵FPX众人,解说傻眼了!

公开课

李玫瑾:为什么性格比能力更重要?

军事要闻

克里米亚大桥又被乌军"盯上":三年三炸