网易首页
39. Randomized Matrix Multiplication - 2
1年前 1076观看
艾伦·爱德曼和茱莉亚
大学课程 / 外语
https://ocw.mit.edu/18-065S18 MIT 18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning, Spring 2018 Professor Strang describes the four topics of the course: Linear Algebra, Deep Learning, Optimization, and Statistics.
共102集
10.8万人观看
1
Course Introduction of 18.065 by Professor Strang
07:03
2
The Column Space of A Contains All Vectors Ax - 1
17:27
3
The Column Space of A Contains All Vectors Ax - 2
17:28
4
The Column Space of A Contains All Vectors Ax - 3
17:23
5
Multiplying and Factoring Matrices - 1
16:11
6
Multiplying and Factoring Matrices - 2
16:14
7
Multiplying and Factoring Matrices - 3
16:03
8
Orthonormal Columns in Q Give Q'Q = I - 1
16:31
9
Orthonormal Columns in Q Give Q'Q = I - 2
16:38
10
Orthonormal Columns in Q Give Q'Q = I - 3
16:28
11
Eigenvalues and Eigenvectors - 1
16:21
12
Eigenvalues and Eigenvectors - 2
16:22
13
Eigenvalues and Eigenvectors - 3
16:21
14
Positive Definite and Semidefinite Matrices - 1
15:12
15
Positive Definite and Semidefinite Matrices - 2
15:19
16
Positive Definite and Semidefinite Matrices - 3
15:03
17
Singular Value Decomposition (SVD) - 1
17:54
18
Singular Value Decomposition (SVD) - 2
17:59
19
Singular Value Decomposition (SVD) - 3
17:51
20
Eckart-Young - The Closest Rank k Matrix to A - 1
15:48
21
Eckart-Young - The Closest Rank k Matrix to A - 2
15:49
22
Eckart-Young - The Closest Rank k Matrix to A - 3
15:46
23
Norms of Vectors and Matrices - 1
16:30
24
Norms of Vectors and Matrices - 2
16:30
25
Norms of Vectors and Matrices - 3
16:26
26
Four Ways to Solve Least Squares Problems - 1
16:40
27
Four Ways to Solve Least Squares Problems - 2
16:41
28
Four Ways to Solve Least Squares Problems - 3
16:32
29
Survey of Difficulties with Ax = b - 1
16:35
30
Survey of Difficulties with Ax = b - 2
16:39
31
Survey of Difficulties with Ax = b - 3
16:27
32
Minimizing _x_ Subject to Ax = b - 1
16:50
33
Minimizing _x_ Subject to Ax = b - 2
16:52
34
Minimizing _x_ Subject to Ax = b - 3
16:46
35
Computing Eigenvalues and Singular Values - 1
16:32
36
Computing Eigenvalues and Singular Values - 2
16:38
37
Computing Eigenvalues and Singular Values - 3
16:29
38
Randomized Matrix Multiplication - 1
17:31
39
Randomized Matrix Multiplication - 2
17:36
40
Randomized Matrix Multiplication - 3
17:29
41
Low Rank Changes in A and Its Inverse - 1
16:54
42
Low Rank Changes in A and Its Inverse - 2
16:55
43
Low Rank Changes in A and Its Inverse - 3
16:49
44
Matrices A(t) Depending on t, Derivative = dA_dt - 1
17:00
45
Matrices A(t) Depending on t, Derivative = dA_dt - 2
17:01
46
Matrices A(t) Depending on t, Derivative = dA_dt - 3
16:54
47
Derivatives of Inverse and Singular Values - 1
14:25
48
Derivatives of Inverse and Singular Values - 2
14:32
49
Derivatives of Inverse and Singular Values - 3
14:25
50
Rapidly Decreasing Singular Values - 1
16:54
51
Rapidly Decreasing Singular Values - 2
16:56
52
Rapidly Decreasing Singular Values - 3
16:52
53
Counting Parameters in SVD, LU, QR, Saddle Points - 1
16:23
54
Counting Parameters in SVD, LU, QR, Saddle Points - 2
16:24
55
Counting Parameters in SVD, LU, QR, Saddle Points - 3
16:16
56
Saddle Points Continued, Maxmin Principle - 1
17:27
57
Saddle Points Continued, Maxmin Principle - 2
17:32
58
Saddle Points Continued, Maxmin Principle - 3
17:27
59
Definitions and Inequalities - 1
18:23
60
Definitions and Inequalities - 2
18:30
61
Definitions and Inequalities - 3
18:19
62
Minimizing a Function Step by Step - 1
17:57
63
Minimizing a Function Step by Step - 2
18:02
64
Minimizing a Function Step by Step - 3
17:50
65
Gradient Descent - Downhill to a Minimum - 1
17:37
66
Gradient Descent - Downhill to a Minimum - 2
17:39
67
Gradient Descent - Downhill to a Minimum - 3
17:36
68
Accelerating Gradient Descent (Use Momentum) - 1
16:23
69
Accelerating Gradient Descent (Use Momentum) - 2
16:23
70
Accelerating Gradient Descent (Use Momentum) - 3
16:23
71
Linear Programming and Two-Person Games - 1
17:54
72
Linear Programming and Two-Person Games - 2
18:00
73
Linear Programming and Two-Person Games - 3
17:52
74
Stochastic Gradient Descent - 1
17:43
75
Stochastic Gradient Descent - 2
17:49
76
Stochastic Gradient Descent - 3
17:37
77
Structure of Neural Nets for Deep Learning - 1
17:48
78
Structure of Neural Nets for Deep Learning - 2
17:54
79
Structure of Neural Nets for Deep Learning - 3
17:47
80
Backpropagation - Find Partial Derivatives - 1
17:35
81
Backpropagation - Find Partial Derivatives - 2
17:35
82
Backpropagation - Find Partial Derivatives - 3
17:36
83
Completing a Rank-One Matrix, Circulants! - 1
16:40
84
Completing a Rank-One Matrix, Circulants! - 2
16:44
85
Completing a Rank-One Matrix, Circulants! - 3
16:34
86
Eigenvectors of Circulant Matrices - Fourier Matrix - 1
17:35
87
Eigenvectors of Circulant Matrices - Fourier Matrix - 2
17:36
88
Eigenvectors of Circulant Matrices - Fourier Matrix - 3
17:28
89
ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule - 1
15:49
90
ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule - 2
15:50
91
ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule - 3
15:43
92
Neural Nets and the Learning Function - 1
18:45
93
Neural Nets and the Learning Function - 2
18:48
94
Neural Nets and the Learning Function - 3
18:44
95
Distance Matrices, Procrustes Problem - 1
14:40
96
Distance Matrices, Procrustes Problem - 3
14:37
97
Finding Clusters in Graphs - 1
11:39
98
Finding Clusters in Graphs - 2
11:40
99
Finding Clusters in Graphs - 3
11:35
100
Alan Edelman and Julia Language - 1
12:46
101
Alan Edelman and Julia Language - 2
12:50
102
Alan Edelman and Julia Language - 3
12:45
相关视频
03:16
我家小狗男爵和柏拉图的理念学说有何关系,且听我分解
轻知识
12月前
1033观看
06:44
英国经验主义哲学家,贝克莱的核心思想存在即是被感知
轻知识
7月前
1091观看
02:46
克里托问:“我们怎么葬你呢?”苏格拉底答:“如果你能抓住我,随你怎么葬。”然后对其余人说:“他怎么不...
轻知识
1年前
1579观看
00:35
柏拉图的《理想国》,竟然这么好读!
轻知识
12月前
2479观看
02:39
在柏拉图的《理想国》中,关于正义,一个叫塞拉西马柯的人指出两点:第一,正义的人往往倒霉,不正义的人总...
轻知识
8月前
1265观看
04:32
柏拉图《理想国》正义和自由什么关系?为什么自由不是首要价值?
轻知识
1年前
2319观看
02:18
在《高尔吉亚篇》中,柏拉图写了苏格拉底与一个叫卡利克勒的人之间的一场辩论。卡利克勒提出一个论点:强权...
轻知识
9月前
1526观看
03:50
什么是言论自由?哲学家密尔自由的两个原则
轻知识
12月前
2035观看
01:48
傅佩荣:大哲学家的一生怎样度过?一般人看了好笑,但学不来的
轻知识
1月前
885观看
03:39
在古罗马,最重要的哲学流派是斯多葛派,这个流派有三个代表人物,其中一个政治家,叫塞涅卡,一个奴隶,叫...
轻知识
3月前
1526观看
第2/19集 · 06:19
【《自述简略西方哲学史》】毕达哥拉斯学派
大学课程
2年前
1799观看
05:40
波普尔:失败的人生,永远在计划!聪明的人才不会管这个
轻知识
2020年12月26日
20.6万观看
第1/15集 · 12:37
【南开大学公开课:心理学与生活】发现自我之旅 - 1
大学课程
2022年8月18日
8.2万观看
11:30
一直怎样才能一直快乐?脑科学家,心理学家,佛学家和哲学家一起同台辩论,答案出乎意料。
轻知识
2022年4月3日
5.3万观看
第2/29集 · 10:46
一个没有恶棍的故事? - 2
大学课程
2022年8月18日
2.7万观看
第23/54集 · 09:37
台湾大学公开课:苑舉正教授讲述怀疑论,思考人生终极目标—23怀疑学派简介
大学课程
2020年3月2日
3万观看