网易首页
38. Randomized Matrix Multiplication - 1
1年前 821观看
艾伦·爱德曼和茱莉亚
大学课程 / 外语
https://ocw.mit.edu/18-065S18 MIT 18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning, Spring 2018 Professor Strang describes the four topics of the course: Linear Algebra, Deep Learning, Optimization, and Statistics.
共102集
10.8万人观看
1
Course Introduction of 18.065 by Professor Strang
07:03
2
The Column Space of A Contains All Vectors Ax - 1
17:27
3
The Column Space of A Contains All Vectors Ax - 2
17:28
4
The Column Space of A Contains All Vectors Ax - 3
17:23
5
Multiplying and Factoring Matrices - 1
16:11
6
Multiplying and Factoring Matrices - 2
16:14
7
Multiplying and Factoring Matrices - 3
16:03
8
Orthonormal Columns in Q Give Q'Q = I - 1
16:31
9
Orthonormal Columns in Q Give Q'Q = I - 2
16:38
10
Orthonormal Columns in Q Give Q'Q = I - 3
16:28
11
Eigenvalues and Eigenvectors - 1
16:21
12
Eigenvalues and Eigenvectors - 2
16:22
13
Eigenvalues and Eigenvectors - 3
16:21
14
Positive Definite and Semidefinite Matrices - 1
15:12
15
Positive Definite and Semidefinite Matrices - 2
15:19
16
Positive Definite and Semidefinite Matrices - 3
15:03
17
Singular Value Decomposition (SVD) - 1
17:54
18
Singular Value Decomposition (SVD) - 2
17:59
19
Singular Value Decomposition (SVD) - 3
17:51
20
Eckart-Young - The Closest Rank k Matrix to A - 1
15:48
21
Eckart-Young - The Closest Rank k Matrix to A - 2
15:49
22
Eckart-Young - The Closest Rank k Matrix to A - 3
15:46
23
Norms of Vectors and Matrices - 1
16:30
24
Norms of Vectors and Matrices - 2
16:30
25
Norms of Vectors and Matrices - 3
16:26
26
Four Ways to Solve Least Squares Problems - 1
16:40
27
Four Ways to Solve Least Squares Problems - 2
16:41
28
Four Ways to Solve Least Squares Problems - 3
16:32
29
Survey of Difficulties with Ax = b - 1
16:35
30
Survey of Difficulties with Ax = b - 2
16:39
31
Survey of Difficulties with Ax = b - 3
16:27
32
Minimizing _x_ Subject to Ax = b - 1
16:50
33
Minimizing _x_ Subject to Ax = b - 2
16:52
34
Minimizing _x_ Subject to Ax = b - 3
16:46
35
Computing Eigenvalues and Singular Values - 1
16:32
36
Computing Eigenvalues and Singular Values - 2
16:38
37
Computing Eigenvalues and Singular Values - 3
16:29
38
Randomized Matrix Multiplication - 1
17:31
39
Randomized Matrix Multiplication - 2
17:36
40
Randomized Matrix Multiplication - 3
17:29
41
Low Rank Changes in A and Its Inverse - 1
16:54
42
Low Rank Changes in A and Its Inverse - 2
16:55
43
Low Rank Changes in A and Its Inverse - 3
16:49
44
Matrices A(t) Depending on t, Derivative = dA_dt - 1
17:00
45
Matrices A(t) Depending on t, Derivative = dA_dt - 2
17:01
46
Matrices A(t) Depending on t, Derivative = dA_dt - 3
16:54
47
Derivatives of Inverse and Singular Values - 1
14:25
48
Derivatives of Inverse and Singular Values - 2
14:32
49
Derivatives of Inverse and Singular Values - 3
14:25
50
Rapidly Decreasing Singular Values - 1
16:54
51
Rapidly Decreasing Singular Values - 2
16:56
52
Rapidly Decreasing Singular Values - 3
16:52
53
Counting Parameters in SVD, LU, QR, Saddle Points - 1
16:23
54
Counting Parameters in SVD, LU, QR, Saddle Points - 2
16:24
55
Counting Parameters in SVD, LU, QR, Saddle Points - 3
16:16
56
Saddle Points Continued, Maxmin Principle - 1
17:27
57
Saddle Points Continued, Maxmin Principle - 2
17:32
58
Saddle Points Continued, Maxmin Principle - 3
17:27
59
Definitions and Inequalities - 1
18:23
60
Definitions and Inequalities - 2
18:30
61
Definitions and Inequalities - 3
18:19
62
Minimizing a Function Step by Step - 1
17:57
63
Minimizing a Function Step by Step - 2
18:02
64
Minimizing a Function Step by Step - 3
17:50
65
Gradient Descent - Downhill to a Minimum - 1
17:37
66
Gradient Descent - Downhill to a Minimum - 2
17:39
67
Gradient Descent - Downhill to a Minimum - 3
17:36
68
Accelerating Gradient Descent (Use Momentum) - 1
16:23
69
Accelerating Gradient Descent (Use Momentum) - 2
16:23
70
Accelerating Gradient Descent (Use Momentum) - 3
16:23
71
Linear Programming and Two-Person Games - 1
17:54
72
Linear Programming and Two-Person Games - 2
18:00
73
Linear Programming and Two-Person Games - 3
17:52
74
Stochastic Gradient Descent - 1
17:43
75
Stochastic Gradient Descent - 2
17:49
76
Stochastic Gradient Descent - 3
17:37
77
Structure of Neural Nets for Deep Learning - 1
17:48
78
Structure of Neural Nets for Deep Learning - 2
17:54
79
Structure of Neural Nets for Deep Learning - 3
17:47
80
Backpropagation - Find Partial Derivatives - 1
17:35
81
Backpropagation - Find Partial Derivatives - 2
17:35
82
Backpropagation - Find Partial Derivatives - 3
17:36
83
Completing a Rank-One Matrix, Circulants! - 1
16:40
84
Completing a Rank-One Matrix, Circulants! - 2
16:44
85
Completing a Rank-One Matrix, Circulants! - 3
16:34
86
Eigenvectors of Circulant Matrices - Fourier Matrix - 1
17:35
87
Eigenvectors of Circulant Matrices - Fourier Matrix - 2
17:36
88
Eigenvectors of Circulant Matrices - Fourier Matrix - 3
17:28
89
ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule - 1
15:49
90
ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule - 2
15:50
91
ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule - 3
15:43
92
Neural Nets and the Learning Function - 1
18:45
93
Neural Nets and the Learning Function - 2
18:48
94
Neural Nets and the Learning Function - 3
18:44
95
Distance Matrices, Procrustes Problem - 1
14:40
96
Distance Matrices, Procrustes Problem - 3
14:37
97
Finding Clusters in Graphs - 1
11:39
98
Finding Clusters in Graphs - 2
11:40
99
Finding Clusters in Graphs - 3
11:35
100
Alan Edelman and Julia Language - 1
12:46
101
Alan Edelman and Julia Language - 2
12:50
102
Alan Edelman and Julia Language - 3
12:45
相关视频
第135/242集 · 06:32
活动2.5.1:拓展学习-培养学生的自主学习能力 - 1
大学课程
2022年10月15日
1727观看
11:06
【一席】设计师张剑:人人都可以是产品设计师 - 3
TED·演讲
2022年10月15日
1391观看
第2/3集 · 46:37
法律硕士|华图法硕名师于越老师刑法导学课(1) - 2
考研留学
2年前
1167观看
13:28
【厦门名师课堂】高二历史:中国古代的科学技术(主讲人:徐音,中央音乐学院鼓浪屿钢琴学校文化学科教研室负责人) - 1
2年前
1960观看
第13/81集 · 14:08
【名师课堂】哲学导论(全集配字幕)--王德峰复旦教授(5) - 1
大学课程
2022年10月27日
3773观看
第8/81集 · 08:59
模块一 孙书伐莒之战 - 3
大学课程
2022年9月20日
1964观看
07:00
【名师课堂】《风险模型与非寿险精算学》授课讲师:谢远涛——对外经济贸易大学课程(1-3 估计)
轻知识
2年前
1341观看
35:12
年8月13日 克拉申博士参加双语教育会议记录(1) - 3
2年前
1039观看
第25/51集 · 06:36
模块四 3.2 言为心声的语言魅力(1)
大学课程
2022年9月9日
1573观看
第6/66集 · 05:32
模块一 第四节 行政管理学在我国的重建与发展 - 1
大学课程
2022年9月9日
5191观看
第2/80集 · 05:41
什么是华文教学(一) - 1
大学课程
2022年9月21日
1957观看
第11/12集 · 18:48
【通识精品】经典诗词与人生(周圣伟教授:华东师范大学)【壹幕工作室】(第四节课) - 2
大学课程
2022年10月28日
1463观看
01:37
专业报考七:法学尽头是教授 1.教授令人尊敬 2.教授收入令人羡慕
轻知识
5月前
720观看
第85/88集 · 05:59
东南大学公开课:学术交流英语 8.6 - 3
大学课程
2年前
933观看
10:37
北大心理学研究与论文写作 12讲 周晓林主讲(3) - 3
2年前
901观看
第1/12集 · 00:29
美国研究生 1. 课程简介
考研留学
2021年8月2日
7.4万观看